Home » Intelligent Design » How IDers can win the war

How IDers can win the war

Question: What sort of scientific discovery will win the war for ID?

Answer: Something that will bring healing to the sick and make money for the biotech industry.

Here are some thoughts from Bill Dembski.

Keynote Address at RAPID (transcript courtesy IDEA UCSD)

Steganography

Finally, we come to the research theme that I find most intriguing. Steganography, if you look in the dictionary, is an archaism that was subsequently replaced by the term “cryptography.” Steganography literally means “covered writing.” With the rise of digital computing, however, the term has taken on a new life. Steganography belongs to the field of digital data embedding technologies (DDET), which also include information hiding, steganalysis, watermarking, embedded data extraction, and digital data forensics. Steganography seeks efficient (that is, high data rate) and robust (that is, insensitive to common distortions) algorithms that can embed a high volume of hidden message bits within a cover message (typically imagery, video, or audio) without their presence being detected. Conversely, steganalysis seeks statistical tests that will detect the presence of steganography in a cover message.

Consider now the following possibility: What if organisms instantiate designs that have no functional significance but that nonetheless give biological investigators insight into functional aspects of organisms. Such second-order designs would serve essentially as an “operating manual,” of no use to the organism as such but of use to scientists investigating the organism. Granted, this is a speculative possibility, but there are some preliminary results from the bioinformatics literature that bear it out in relation to the protein-folding problem (such second-order designs appear to be embedded not in a single genome but in a database of homologous genomes from related organisms).

While it makes perfect sense for a designer to throw in an “operating manual” (much as automobile manufacturers include operating manuals with the cars they make), this possibility makes no sense for blind material mechanisms, which cannot anticipate scientific investigators. Research in this area would consist in constructing statistical tests to detect such second-order designs (in other words, steganalysis). Should such second order designs be discovered, the next step would be to seek algorithms for embedding these second-order designs in the organisms. My suspicion is that biological systems do steganography much better than we, and that steganographers will learn a thing or two from biology, though not because natural selection is so clever, but because the designer of these systems is so adept at steganography.

Such second-order steganography would, in my view, provide decisive confirmation for ID. Yet even if it doesn’t pan out, first-order steganography (i.e., the embedding of functional information useful to the organism rather than to a scientific investigator) could also provide strong evidence for ID. For years now evolutionary biologists have told us that the bulk of genomes is junk and that this is due to the sloppiness of the evolutionary process. That is now changing. For instance, Amy Pasquenelli at UCSD, in commenting on long stretches of seemingly barren DNA sequences, asks us to reconsider the contents of such junk DNA sequences in the light of recent reports that a new class of non-coding RNA genes are scattered, perhaps densely, throughout these animal genomes. (microRNAs: Deviants no Longer. Trends in Genetics 18(4) (4 April 2002): 171-3.) ID theorists should be at the forefront in unpacking the information contained within biological systems. If these systems are designed, we can expect the information to be densely packed and multi-layered (save where natural forces have attenuated the information). Dense, multi-layered embedding of information is a prediction of ID.

It’s time to bring this talk to an end. I close with two images (both from biology) and a final quote. The images describe two perspectives on how the scientific debate over intelligent design is likely to play out in the coming years. From the vantage of the scientific establishment, intelligent design is in the position of a mouse trying to move an elephant by nibbling at its toes. From time to time the elephant may shift its feet, but nothing like real movement or a fundamental change is about to happen. Let me emphasize that this is the perspective of the scientific establishment. Yet even adopting this perspective, the scientific establishment seems strangely uncomfortable. The mouse has yet to be squashed, and the elephant (as in the cartoons) has become frightened and seems ready to stampede in a panic.

The image that I think more accurately captures how the debate will play out is, ironically, an evolutionary competition where two organisms vie to dominate an ecological niche (think of mammals displacing the dinosaurs). At some point, one of the organisms gains a crucial advantage. This enables it to outcompete the other. The one thrives, the other dwindles. However wrong Darwin might have been about selection and competition being the driving force behind biological evolution, these factors certainly play a crucial role in scientific progress. It’s up to ID proponents to demonstrate a few incontrovertible instances where design is uniquely fruitful for biology. Scientists without an inordinate attachment to Darwinian evolution (and there are many, though this fact is not widely advertised) will be only too happy to shift their allegiance if they think that intelligent design is where the interesting problems in biology lie.

I would like to add that I made a small amount of money ($400) after buying shares in a company, Geron, that unwittingly profited from this approach (For the record I sold my shares, and this is no way a stock promotion, and I have no longer any financial interest ).

Geron noticed a correlation between the “age” of a cell (its closeness to senescence) and the amount of junk DNA at the end of a chromosome (telomeres). They must have thought something like, “it’s always hard to tell cause from effect, but ‘what the heck’, let’s see if playing with telomere length will affect longevity”

What they did was work the hTRT gene that affected telomere length, and then “voila”, the cell became immortalized! The junk DNA essentially served as a road map for the researchers. How hard would it have been to uncover this without “junk DNA”!

Geron’s work may lead to important medical advances in curing burn victims and spinal chord victims and help us understand the keys to longevity. Thus, already, some biotech firms are inadvertently happening upon the “user manual” qualities of junk DNA as Dembski envisioned in his steganography speech.

It was also very satisfying to see one or our IDEA members who is a protein engineer apply the concepts of comparing sequences across species to assist her in elucidating the structure of proteins she was researching. Indeed, were it not for how proteins were architected across various species, the elucidation would have been exponentially more difficult. Thankfully those “conserved” regions led her quickly to where the treasures would be found.

These are early developments in the ID conception, and if biotech companies ever seize on this view of reality and make serious money, it won’t matter how the rest of academia handles the peer-review process as ID will be part of a far more profitable enterprise, and the de facto paradigm for biology.

A way ID can win the war is to get profit-oriented biotech companies on their side.

Salvador

PS
here is a recent Geron Press Release
GERON ANNOUNCES COMMERCIAL LAUNCH OF TELOMERASE-IMMORTALIZED CELL LINE

  • Delicious
  • Facebook
  • Reddit
  • StumbleUpon
  • Twitter
  • RSS Feed

7 Responses to How IDers can win the war

  1. See, this is the stuff that grabs a person…
    As I recall, (I tried to check this but couldn’t recall the original post that generated the comments, go figure) DaveScot had some interesting ideas about how information is contained in DNA, I want to say it had something to do with the shape, but could be wrong.
    Anywho, this is the cool stuff that reaches out grabs folks by the imagination.
    Salvador spoke of making ID a profit generator for biotech and (presumably) by extension, perhaps the pharmaceuticals also.
    Maybe I’m just scarily degenerate, but I also see a (admittedly risky perhaps not desireable) way to make ID profitable, and raise the public profile of this way of thinking about and in science…hollywood…I’m sorry if that bugs anyone, I couldn’t help it, talking about imbedded and layered and stacked information in biological systems brought to mind first thing the matrix trilogy of movies and the movie Johnny Mnemonic. Not truly related or at least not obviously, but the nearest thing from hollywood in my personal experience.
    And no matter what ya think, ya gotta admit, this stuff is COOL!!!

  2. [...] I foresaw this. Recall, I was the one who described: How IDers can win the war. Ruloff said it better than I ever could. These icons link to social bookmarking sites where readers can share and discover new web pages. [...]

  3. [...] The Explanatory Filter may very well succeed in identifying places to look for design which may have otherwise been easily overlooked. I will post on this more, but in the meantime in case you’ve missed it, here is my essay on a related topic: How IDers can win the war [...]

  4. [...] Secondly, there may be designs whose discovery might help in medical science. Todd Wood last night highlighted that there seems to be a language in biology, and I really wanted to interject and say, “ID proponents have argued this and even some of the members of the IDEA clubs of years past have seen it in their protein research.” ID’s formalisms can help creationists interested in advancing medical science by helping elucidate designs that may be in the gene sequences but have not been fully elucidated. These designs might only be detectable by comparing species, but it will help us understand human biology more readily and thus advance medical science more rapidly. For more details, see: How IDists can with the war [...]

  5. [...] Secondly, there may be designs whose discovery might help in medical science. Todd Wood last night highlighted that there seems to be a language in biology, and I really wanted to interject and say, “ID proponents have argued this and even some of the members of the IDEA clubs of years past have seen it in their protein research.” ID’s formalisms can help creationists interested in advancing medical science by helping elucidate designs that may be in the gene sequences but have not been fully elucidated. These designs might only be detectable by comparing species, but it will help us understand human biology more readily and thus advance medical science more rapidly. For more details, see: How IDists can with the war [...]

  6. [...] [...]

  7. […] wrote here in 2006 that the Designer of life has put steganography (hidden messages in DNA) to help scientists […]

Leave a Reply